Message #531
From: Melinda Green <melinda@superliminal.com>
Subject: Re: Cube in a cube (16 moves)
Date: Sun, 01 Jun 2008 18:45:22 -0700
That’s interesting also because there is a known interesting state on
the 3D cube called "superflip". I mentioned this once before and issued
the following challenge: Produce your shortest solution to this state
that I’ve called the "superduperflip"
MagicCube4D 2 0 0 3
000010000020304050000060000
111171111121314151111101111
222212222272324202222262222
333313333323730353333363333
444414444424047454444464444
555515555505354575555565555
666606666626364656666676666
777767777727374757777717777
.
Notice that it’s quite symmetric and suggest that a short solution may
be possible, but if it really is the proper 4D analog of superflip then
perhaps not.
-Melinda
Remigiusz Durka wrote:
> I’ve called this state: "SUPERDOT". I had 20 twist in my solution.
> Great job!
>
> MagicCube4D 2 0 20 3
> 000000000000070000000000000
> 111111111111161111111111111
> 222222222222252222222222222
> 333333333333343333333333333
> 444444444444434444444444444
> 555555555555525555555555555
> 666666666666616666666666666
> 777777777777707777777777777
> 522:2 522:2 34:5 012:2 012:2 34:2 610:-1 316:2 316:2 216:2
> 612:2 310:2 310:2 616:-1 322:2 014:2 014:2 322:5 54:2 54:2
> 616:2 014:2.
>
>
>
> Ater doing 4^4 in 14 twists I did checkerboard on 2^4 in the same way
> you did. It looks strange with this type of moves on 2^4, is it?
>
> Sometime ago I’ve reduced number of twists in 3^4 checerboard (to
> 24) but I cannot do the same with 5^4 (44 twists)
>
> Anyone knows if checkerboard is possible on 2^5 and 4^5? I’ve tried
> and tried but I failed…