Message #1637
From: David Smith <djs314djs314@yahoo.com>
Subject: Re: [MC4D] Klein’s Quartic n-order formula and specific values
Date: Sun, 01 May 2011 19:30:53 -0700
Well, I made a typo. I am having the worst time with this!! It was just a typo,
but it affected the order-2 value (as the typo was in the program I used to calculate
the value), which is fortunately the least important value and not handled by the
formula. Believe it or not, I was actually foolish enough to rush the email, as I
had to be somewhere. Sometimes I make poor decisions, such as when I left
the group. There is a reason for this, but I’d rather not elaborate. Suffice it to say
I can get very excited and will post without thinking things through. I’m quite
frustrated about this whole mess, and am beginning to once again doubt my place
here. I appreciate that I somehow seem to be accepted. Thank you all for your
infinite patience with my less than acceptable behavior.
Order-2:
((55!)/2)*(3^54) =
369146257949872278508346583570993737249432489876231945112921980256300934<br> 568495001108480000000000000
All the best,
David
— On Sun, 5/1/11, David Smith <djs314djs314@yahoo.com> wrote:
From: David Smith <djs314djs314@yahoo.com>
Subject: [MC4D] Klein’s Quartic n-order formula and specific values
To: 4D_Cubing@yahoogroups.com
Date: Sunday, May 1, 2011, 8:09 PM
Hi everyone,
Okay, I can now claim I fully understand the Klein’s Quartic puzzle. I apologize
for my earlier mistakes, and guarantee that the following formula and calculations
are accurate, excepting a typo. I had failed to realize that Klein’s Quartic is very
much like a 3-dimensional puzzle. It has ‘corners’ and ‘edges’. I did not study the
order-2 puzzle enough to realize that the ‘corners’ existed. This is of course
obvious to all of you, since you have played with the puzzle more than I have, and
many of you have even solved it. The way the order-3 and higher puzzle appear
immediately made obvious to me the nature of the ‘corners’ and ‘edges’. The
order-2 puzzle’s appearance somewhat disguises its true nature, but that is no
excuse for my lack of investigation.
Here is the
formula for the number of permutations of the order-n Klein’s Quartic
puzzle for odd n >= 3:
And here are individual values:
Order-2:
((55!)/2)*(3^53) =
123048752649957426169448861190331245749810829958743981704307326752100311<br> 522831667036160000000000000
Order-3:
(84!)*(56!)*(2^81)*(3^55) =
993919860351336970116941239153296103939497528293494685545497421465353823<br> 867122389570825760861036003717296401423048183458017237535043916628667848529348<br> 418500952983796478875293990282425667716662641223463686191606729487155200000000<br> 000000000000000000000000
Order-5:
(((168!)/((7!)^24))^2)*((168!)/2)*(84!)*(56!)*(2^81)*(3^55)
=
153813597602981865296923122878293408297707605840877433021601977114757488<br>
141188456378084938578404431213530399155802876124924501302998795803488994282318<br>
638973392226465765639269482642062480505130632851949992339629771331733910361394<br>
187875621200775783795330499539579105683370865469180184421558825857092857952139<br>
675652574064438504019365838704215066676118844823272520482463359811616584351650<br>
343294082974911191373304636015923982296607487243206304661823823179829496028840<br>
929128708900416627301861209241866736735119716387769997220107174269840158765913<br>
914510643210391000467377130910048027024945418450246083224037558282200707856137<br>
417672596140743196018794757987904441064746702209870189273782494772422622248229<br>
582206349072075076140907820840336618805947675411840837091706167131159031529916<br>
608909239023245119282172250315201115126049303085088200765125878010439058553209<br>
19488480077017358056554496000000000000000000000000
0000000000000000000000000000<br>
0000000000000000000000000000000000000000000000000000
Order-7:
(((168!)/((7!)^24))^6)*(((168!)/2)^2)*(84!)*(56!)*(2^81)*(3^55) =
291652081227680814998213157804602335018085364039052280961816073114448730<br>
392894920023356437101146476284320603185810624757021755947665298890077989550883<br>
885311343466371999384057110413096574296849941236724269152103544645442486218695<br>
076600252096301812306832372577853207239998648950663571317985724006765904739680<br>
977105203817627232866878630402546853197300928140997055230021724053848990847216<br>
551957669431605329014717773898577089777619452520575734359293791029055047460576<br>
974564133092157579429829165447260989008971819817294651225865111987625423736784<br>
401171396455752024547584118386324881866238870218023662586959246641024767000358<br>
285518158311830911257029022642565363726603369418008829918092525995884379417405<br>
670910582899355979014578770936069119778606566775357202755594741592869227544047<br>
178229603580102844151585056303034806574605033952482681047551433264000114310716<br>
924001031918988612472952919237611441342665686598541
080344137343237544467454063<br>
349911222948500021047225513530557140871503559750837011458585002994770311031339<br>
781109128549029418138339924851610383224600629274310641062928263251950995560148<br>
937777274448616949465037469723128521933851772717618059366344850213381098526318<br>
319060550935249803574921929117917238519906930661961947706955966404872626429782<br>
132804861306667749534406026729935529881538323975563828330896791908785507675059<br>
773775794278700459656226381696124358922920273604368715840236421715579658507382<br>
365453517371351486086458623588131038391141321230610350870074067038457996241667<br>
720900561881878754648098316208849769503988442111398599945245303613729339183849<br>
167767601179210373127434178110063536344436887129279839469942450678228480290417<br>
935016209791318697331932192833279890869534215446438165799082847867421585376427<br>
125195520939078272991998436471331374584526239824202581947561332987759818220178<br>
4496259907394520261388
43213446477424511640590394442357826468773763181183467355<br>
539723948286105864976159089388473584954233058380887860737526988800000000000000<br>
000000000000000000000000000000000000000000000000000000000000000000000000000000<br>
000000000000000000000000000000000000000000000000000000000000000000000000000000<br>
00000000000000000000000000000000000000
Order-9:
(((168!)/((7!)^24))^12)*(((168!)/2)^3)*(84!)*(56!)*(2^81)*(3^55)
=
677582869828578066590514174426477151611690434506950459808287370437586411<br>
589712092377745815252610930902313658103766880255574538687753843375713294897632<br>
229604198139428110010773285646728126823387215212255969547186353882369700028967<br>
357420423630846160741822346537314280930026018987102915805246070856404614500425<br>
080097246212719291213975788892366066186385076310698582572122488831893325275338<br>
022200576603148637405090301054731728037990100651517592252935578389346975932765<br>
393031787471498515172826138520961440317355862707925533637995776970273715363414<br>
763966001363948789113428479431707402741209524218143534272382729149389093065277<br>
738776510908735266022840504909278164416307388596961383581457574835426043053858<br>
567130861051011559090208050156911206052149351505039750810224644148029574393183<br>
643117846586265363506172950816736400283897320748166942865332312858367774914685<br>
40096969369772032552421988068250720674237146034126
7136120269318225507969219890<br>
147215159865406150475078930492604815977957514374625438016561144829700944961469<br>
903841769287163517353646630553103279651164614135572024499483587396729352167073<br>
314647757488867863523612624916957271732409936033435795555768007982838821934759<br>
529312703400982479192577976332369625248478885795751249576247219706313028822865<br>
251158674424998015916461969114262493126387933357244586468480986348677384231084<br>
051947741834028586096264224079871413353793237542286834143546953887276596438016<br>
154110548089321896312300275346346285309747824057951560619284748297160126997018<br>
555164003753708299148367101333402034431705143711815830435474957991495425111612<br>
359055249286259249512637496443116519132276856611864187351528116367034140077649<br>
228256600937975605450350463096018689689494317504186472028713476549889531616376<br>
265218640002711615030585980771460377839679256037218151469434036491261624917999<br>
789690125252651753140
985992078803105585299781688200576431175253129002734686056<br>
692936038452950797255495408609243046821111989281772950244181499940165613599069<br>
752993108229555644132121597169167501944449522582579165541347370340485791216208<br>
810170273407800901109543642032049395922018609103137870253925946466865040950825<br>
824546115634620984823219064591293138556739533342518609429381273237731039456346<br>
033862977346326049590625286483487039215891508292461576449677325801713807841621<br>
978580747913527131242794907636091311463666958399217772206627407877191823447182<br>
972778655397576328357440033690392795699207683940192423828998570474496739832672<br>
019477652114590214018791934706322664952454443925279628796082488146236072268592<br>
846976676880487114045448401559927701979774401207562058551583086165782131087375<br>
511914244510236734437321250625678331088571958029689058768955878732093815869906<br>
096544425748818588441839626888167846642644935534200259360142428511293980509
753<br>
769444013986800173687430173032163302215452990618380458170730647098036066945049<br>
985220622514584487675630337487016621327879705553585461019820126404131837827513<br>
491519322013117934471257069495199166734762494535604267339796974779665699893326<br>
026066490637551663922691469515745734461065858146408933969356951124432041596128<br>
272794916637229823948248584501592347729992029532594860584427611186151786254334<br>
823503820350363849469150455890670118740902566788239032536444855114742741037803<br>
655098630204492498417146997924096033291795233394232609566695291939284728181124<br>
371349676631081443458321783163024319460537095544807147503134516825792732519141<br>
759413323311576933662237655040000000000000000000000000000000000000000000000000<br>
000000000000000000000000000000000000000000000000000000000000000000000000000000<br>
000000000000000000000000000000000000000000000000000000000000000000000000000000<br>
0000000000000000000000000000000000000000000000
00000000000000000000000000000000<br>
0000000000000000000000000000000000000000000000000000000000000
I have to go now, but thank you all for your patience. This formula and the values
should not have to be corrected this time.
All the best,
David